skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mason, Philippa J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Evidence for the timing and pace of past grounding lineretreat of the Thwaites Glacier system in the Amundsen Sea embayment (ASE)of Antarctica provides constraints for models that are used to predict thefuture trajectory of the West Antarctic Ice Sheet (WAIS). Existingcosmogenic nuclide surface exposure ages suggest that Pope Glacier, a formertributary of Thwaites Glacier, experienced rapid thinning in the early tomid-Holocene. There are relatively few exposure ages from the lower ice-freesections of Mt. Murphy (<300 m a.s.l.; metres above sea level) that are uncomplicated byeither nuclide inheritance or scatter due to localised topographiccomplexities; this makes the trajectory for the latter stages ofdeglaciation uncertain. This paper presents 12 new 10Be exposure agesfrom erratic cobbles collected from the western flank of Mt. Murphy, within160 m of the modern ice surface and 1 km from the present grounding line.The ages comprise two tightly clustered populations with mean deglaciationages of 7.1 ± 0.1 and 6.4 ± 0.1 ka (1 SE). Linear regressionanalysis applied to the age–elevation array of all available exposure agesfrom Mt. Murphy indicates that the median rate of thinning of Pope Glacierwas 0.27 m yr−1 between 8.1–6.3 ka, occurring 1.5 times faster thanpreviously thought. Furthermore, this analysis better constrains theuncertainty (95 % confidence interval) in the timing of deglaciation atthe base of the Mt. Murphy vertical profile (∼ 80 m above themodern ice surface), shifting it to earlier in the Holocene (from 5.2 ± 0.7 to 6.3 ± 0.4 ka). Taken together, the results presentedhere suggest that early- to mid-Holocene thinning of Pope Glacier occurredover a shorter interval than previously assumed and permit a longer durationover which subsequent late Holocene re-thickening could have occurred. 
    more » « less